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Scatterometer Wind Concept

» Satellite wind data from radar signals relate to wind stress,
hot wind speeds

* Commonly known as Equivalent Neutral (EN) winds

* EN winds are a theoretical concept and hold validity
exclusively under neutral atmospheric conditions (see the
hext slide)

* Often used in bulk formulas to calculate sensible and latent
heat fluxes

* However, stability-related biases can introduce significant
errors in flux estimates (see the next slide)
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Wind Difference COARE
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*moisture also plays important role (not included in this example)
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Motivation..

* The calculation of surface turbulent stress (1) from wind speed requires
knowledge of the atmospheric stratification. In terms of a drag coefficient
(C,), surface stress is defined as,

T = pChioUspl Uyl

u* Bias
¢ u*Buoy_adjusted - U*Buoy :
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* A key advantage of EN winds Subscript buoy._adjusted, ux = Cyoen’? *Usoen
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Turbulent Flux Calculation

* The parameter u= can be used in the computation of sensible heat
(SHF) and latent heat (LHF) fluxes, represented as follows,

SHF = -pCpO+|u+|,
LHF = -pLvg+|ux|

* where p is the air density, 6+ and g+ are scaling parameters analogous to
ux, Cp is the specific heat of air, and Lv is the latent heat of
vaporization

* Enhancing the accuracy of modeled values of ux contributes to refining
the accuracy of modeled surface turbulent fluxes

* NOTE: COARE Bulk algorithm assumes stability included winds as input
for the flux calculation
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CYGNSS Flux Experiment

*CYGNSS_unadjusted: assumes

equivalent neutral winds from
CYGNSS:; uses COARE as is:

* (U*=Cp10"2 *Ugen).

*CYGNSS_adjusted: assumes
equivalent neutral winds from CYGNSS
with COARE corrections:

* (ux = Coioen?*Uyoen )
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In Flux unadjusted, ux is Cy;,"2*U,q => default in COARE
adjusted, ux = Cp;oen % *U oen => changes made in COARE
Reference data (subscript Buoy), ux = C,,"2*U,,
* CYGNSS_adjusted (blue curve) demonstrate a closer alignment (reduction of 10-
20 Wm-2) with buoy-measured fluxes than CYGNSS_unadjusted (red curve)

* The biases tend to reach a minimum at the transition from stable to unstable
atmospheric stratification and tfowards stable conditions
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CYGNSS LHF (left) &
Temperature (right) Difference
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* Adjusted CYGNSS LHF generally shows reduced magnitudes

*  Kuroshio and Western Boundary Currents show LHF differences up to 15-20 W/m? in January
*  Notable differences appear in Arabian and Red Sea

* Most biases emerge in areas characterized by highly unstable atmospheric conditions
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CYGNSS Flux
Scatterplot

Aggregated whole
Tropical Buoy
stations
(2018-2023)
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Improved statistics in
adjusted (left panel) over
unadjusted (right panel)

u - mean difference (CYGNSS— buoy)

o - standard deviation (CYGNSS — buoy)
RMSD- root mean square difference

p - Corr. Coeff.
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Summary

* Scatterometer retrieved EN winds represent theoretical wind
scenario in neutral atmospheric stratification

* The Bourassa & Hughes (2018) approach enables precise
surface flux estimates using the EN winds

* CYGNSS and tropical buoy data confirm its effectiveness
across stability regimes

* Differences between default and modified COARE setups are
notable (~15-25 W/m2 LHF) in highly unstable atmospheric
conditions

* The CYGNSS heat flux products based on the modified COARE
algor'l’rhm_riq c1(able on the JPL PO.DAAC server

you for your kind attention!
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* Backup slide
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CYGNSS Surface Heat Fluxes
Crespo et al., 2019 (Rem. Sens.)

* Publicly released Science/Climate data product consisted of an

estimate of Sensible and Latent heat flux
* Uses COARE 3.5 Bulk Algorithm
* Flux calculation utilizes L2 CYGNSS Wind Products
* Uses ERAD for thermodynamic variables
* Currently validated up to 25 m s-1

CYGNSS

LHF =L,
SHF =c,p

=
ﬁzz/‘f;‘_ !

ERAS

* Limiting factors: transfer coefficients, sea salt spray, uncertainties in

the Reanalysis data over convective regions
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Surface-layer Stability

Stabi”ty function COARE 3.6 theoretical curve
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and thus EN winds are
generally assumed to
be a good approx..

Z,, measurement height, L is the Obukhov length, z, the surface roughness, u, the frictional velocity
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Most biases emerge in areas characterized by highly
unstable atmospheric conditions
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